Tentukan pusat dan jari jari lingkaran berikut.. 1. X^2 + y^2 - 12y + 11 = 0 2. X^2 + y^2 - 4x + 10y - 20 = 0
Matematika
ghastanti
Pertanyaan
Tentukan pusat dan jari jari lingkaran berikut..
1. X^2 + y^2 - 12y + 11 = 0
2. X^2 + y^2 - 4x + 10y - 20 = 0
1. X^2 + y^2 - 12y + 11 = 0
2. X^2 + y^2 - 4x + 10y - 20 = 0
1 Jawaban
-
1. Jawaban AnggitaSeveners
[tex]bentuk \: persamaan \: \\ {x}^{2} + {y}^{2} - ax - by - c = 0 \\ maka \\ p = ( \frac{1}{2} a \: _{)} \frac{1}{2} b) \\ \\ r = \sqrt{ { (\frac{1}{2} a)}^{2} + ( \frac{1}{2}b) {}^{2} - c} [/tex]
[tex]1. \: {x}^{2} + {y}^{2} - 12y + 11 \\ p = ( \frac{1}{2} (0) _{)} \: \frac{1}{2} (12)) \\ \\ p = (0 _{)} \: 6) \\ \\ r = \sqrt{0 + {6}^{2} - 11} \\ r = \sqrt{36 - 11} \\ r = \sqrt{25} \\ r = 5[/tex]
1. P(0,6) dan r = 5
[tex]2. \: {x}^{2} + {y}^{2} - 4x + 10y - 20 = 0 \\ p = ( \frac{1}{2} (4) _{)} \: \frac{1}{2} ( - 10)) \\ \\ p = (2 _{)} \: - 5) \\ \\ r = \sqrt{ {2}^{2} + {( - 5)}^{2} - ( - 20) } \\ r = \sqrt{4 + 25 + 20} \\ r = \sqrt{49} \\ r = 7[/tex]
2. P(2, -5) dan r = 7